## Year 6 (2023-24)

## Carlisle \& Hampton Hill Federation

## Maths

 The Year Ahead...The following information booklet details the general plan for teaching and learning in the coming academic year at HHJS. We follow the White Rose Scheme of learning which is attached for your information. I have also included some extra resources you may find useful at home for pre-teaching or consolidation.

** These booklets are available on the website for all KS1 and 2 year groups across our federation. For more information speak to Miss Duffy (year 4 @HHJS)

## Useful resources

White Rose's free workbooks align with the topics we will cover.

- Available for all topics across the year.
https://whiterosemaths.com/parent-resources


## Get the free workbooks



Free digital tools - these match the representations used in class and align with our mastery approach, by bringing the maths to life.


## Stage 6

## PROMPT sheet

## 6/1 Place value in numbers to 10 million

The position of the digit gives its size

|  | $\begin{aligned} & \text { 气. } \\ & \text { 曾 } \end{aligned}$ |  |  |  | $\begin{aligned} & \text { n } \\ & \text { d } \\ & 0 \\ & \cline { 1 - 2 } \end{aligned}$ | $\underset{ \pm}{n}$ | $\stackrel{n}{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

## Example

The value of the digit ' 1 ' is 10000000
The value of the digit ' 2 ' is 2000000
The value of the digit ' 3 ' is 300000
The value of the digit ' 4 ' is 40000

## 6/1 Round whole numbers

Example 1- Round 342679 to the nearest 10000

- Step 1 - Find the 'round-off digit' - 4
- Step 2 - Move one digit to the right - 2

4 or less? YES - leave 'round off digit' unchanged

- Replace following digits with zeros

ANSWER - 340000
Example 2- Round 345679 to the nearest 10000

- Step 1 - Find the 'round-off digit' - 4
- Step 2 - Move one digit to the right - 5

5 or more? YES - add one to 'round off digit'

- Replace following digits with zeros

ANSWER - 350000

6/2 Negative numbers

$2>-2 \longrightarrow$ We say 2 is bigger than -2
$-2<2 \rightarrow$ We say -2 is less than 2
The difference between 2 and $-2=4$ (see line)

Remember the rules:

- When subtracting go down the number line
- When adding go up the number line
- $8+-2$ is the same as $8-2=6$
- $8-+2$ is the same as $8-2=6$
- $8--2$ is the same as $8+2=10$

6/3 Multiply numbers \& estimate to check
e.g. $152 \times 34$

| COLUMN METHOD |
| :--- |
| 152 |
| $\underline{34 x}(x 4)$ |
| $\frac{4560}{508}(x 30)$ |
| $\underline{5168}$ |

6/3 Use estimates to check calculations
$152 \times 34$
$\approx 150 \times 30$
$\approx 4500$

## 6/3 Divide numbers \& estimate to check

With a remainder also expressed as a fraction
e.g. $4928 \div 32$

BUS SHELTER METHOD
$1 5 \longdiv { 4 3 2 }$
$\approx$ is the symbol for 'roughly equals'
$-120$
12
ANSWER - $432 \div 15=28$ r 12
$=28 \frac{12}{15}$

## 6/3 continued

With a remainder expressed as a decimal
$1 5 \longdiv { 4 3 2 . 0 }$
$\frac{028.8}{1 5 \longdiv { 4 ^ { 4 } 3 ^ { 1 3 } 2 } . ^ { 1 2 } 0}$ $-30 \downarrow$
132
$-120$
12
ANSWER $-432 \div 15=28.8$

6/3 Use estimates to check calculations
$432 \div 15$
$\approx 450 \div 15$
$\approx 30$

## 6/4 Factors, multiples \& primes

- FACTORS are what divides exactly into a number
e.g. Factors of 12 are: Factors of 18 are:

| 1 | 12 |
| :---: | :---: |
| 2 | 6 |
| 3 | 4 |


| 1 | 18 |
| ---: | ---: |
| 2 | 9 |
| 3 | 6 |

The common factors of $12 \& 18$ are: $1,2,3,6$,
The Highest Common Factor is: 6

- PRIME NUMBERS have only TWO factors
e.g. Factors of 7 are:
17

| Factors of 13 are |
| :--- |
| $1 \quad 13$ |

So 7 and 13 are both prime numbers

- MULTIPLES are the times table answers
e.g. Multiples of 5 are:
$\begin{array}{lllll}5 & 10 & 15 & 20 & 25 \ldots . . .\end{array}$
Multiples of 4 are:
$\begin{array}{lllll}4 & 8 & 12 & 16 & 20 \ldots . . . . .\end{array}$
The Lowest Common Multiple of 5 and 4 is: 20


## 6/5 Order of operations

Bracket
Indices
$\left.\begin{array}{l}\text { Divide } \\ \text { Multiply }\end{array}\right\}$ Do these in the order they appear
$\left.\begin{array}{l}\text { Add } \\ \text { Subtract }\end{array}\right\}$ Do these in the order they appear,$~(1)$
e.g. $3+\underset{\text { ffirst }}{4 \times 6-5}=22$ $\underset{\text { first }}{(2+1)} \times 3=9$

## 6/6 Addition

- Line up the digits in the correct columns
e.g. $48 p+£ 2.84+£ 9$
0.48
2.84
9.00+
$£ 12.32$
111


## 6/6 Subtraction

- Line up the digits in the correct columns
e.g. 645-427

$$
\begin{aligned}
& H \quad T \quad U \\
& 6^{3} A \\
& 4 \\
& 4 \\
& 4 \\
& \hline
\end{aligned}
$$

## 6/7 Equivalent fractions

- To simplify a fraction

Example: $\frac{27}{36}$
First find the highest common factor of the numerator and denominator - which is 9 , then divide

$$
\frac{27}{36 \div 9} \div \frac{3}{4}
$$

- To change fractions to the same denominator

Example: $\frac{3}{4}$ and $\frac{2}{3}$
Find the highest common multiple of the denominators - which is 12 , then multiply:

$$
\frac{3}{43}^{x 3}=\frac{9}{12} \text { and } \frac{2^{x 4}}{3 \times 4}=\frac{8}{12}
$$

## 6/8 Add \& subtract fractions

- Make the denominators the same
e.g. $\frac{1}{5}+\frac{7}{10}$
e.g. $\frac{4}{5}-\frac{2}{3}$
$=\frac{2}{10}+\frac{7}{10}$
$=\frac{9}{10}$

Do not add denominators

## 6/9 Multiply fractions

- Write 5 as $\frac{5}{1}$
- Multiply numerators \& denominators
e.g. $5 \times \frac{2}{3}$
$=\frac{5}{1} \times \frac{2}{3}$
$=\frac{10}{3}=3 \frac{1}{3}$

6/9 Divide fractions

- Write 5 as $\frac{5}{1}$
- Invert the fraction after $\div$ sign
- Multiply numerators \& denominators
e.g.
e.g. $\frac{4}{5} \div \frac{2}{3}$
$=\frac{3}{2} \times \frac{1}{5}$
$=\frac{3}{10}$
$=\frac{4}{5} \times \frac{3}{2}$
$=\frac{12}{10}=1 \frac{2}{10}=1 \frac{1}{5}$

6/10 Multiply/divide decimals by 10,100

| $\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & n \\ & 0 \\ & \end{aligned}$ | $n$ n $\frac{2}{0}$ $\frac{7}{z}$ | $\stackrel{\text { n }}{\stackrel{\rightharpoonup}{\sim}}$ | $\stackrel{n}{5}$ | $\bullet$ | $\stackrel{n}{\stackrel{n}{ \pm}}$ | $\begin{aligned} & \frac{n}{士} \\ & \frac{1}{0} \\ & \frac{0}{0} \\ & \frac{5}{5} \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 3 | 5 | 2 | - | 6 | 1 | 7 |

- To multiply by 10 , move each digit one place to the left
e.g. $35.6 \times 10=356$

- To divide by 10 , move each digit one place to the right
e.g. $35.6 \div 10=356=3.56$

| Tens | Units | $\bullet$ | tenths | hundredths |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 5 | $\bullet$ | 6 |  |
|  | 3 | $\bullet$ | 5 | 6 |

- To multiply by 100 , move each digit 2 places to the left
- To divide by 100 , move each digit 2 places to the right

AN ALTERNATE METHOD
Instead of moving the digits
Move the decimal point the opposite way

## 6/11 Multiply decimals

Step 1 - remove the decimal point
Step 2 - multiply the two numbers
Step 3-Put the decimal back in

Example: $\quad 0.06 \times 8$

$$
\begin{aligned}
& \Rightarrow \quad 6 \times 8 \\
& \Rightarrow \quad 48 \\
& \Rightarrow \quad 0.48
\end{aligned}
$$

## 6/11 Divide decimals

Use the bus shelter method
Keep the decimal point in the same place
Add zeros for remainders
Example: $6.28 \div 5$
$5 \frac{1.256}{\lcm{6.1} 2^{2} 8^{3} 0}$

## 6/12 Fraction, decimal, percentage equivalents

LEARN THESE:

$$
\begin{aligned}
& \frac{1}{4}=0.25=25 \% \\
& \frac{1}{2}=0.5=50 \% \\
& \frac{3}{4}=0.75=75 \% \\
& \frac{1}{10}=0.1=10 \%
\end{aligned}
$$

- Percentage to decimal to fraction
$27 \%=0.27=\frac{27}{100}$
$7 \%=0.07=\frac{7}{100}$
$70 \%=0.7=\frac{70}{100}=\frac{7}{10}$
- Decimal to percentage to fraction
$0.3=30 \%=\frac{3}{10}$
$0.03=3 \%=\frac{3}{100}$
$0.39=39 \%=\frac{39}{100}$
- Fraction to decimal to percentage $\frac{4}{5}=\frac{80}{100}=80 \%=0.8$
Change to 100

0. 375
$\frac { 3 } { 8 } = 3 \div 8 = 8 \longdiv { 3 . { } ^ { 3 } 0 ^ { 6 } 0 ^ { 4 } 0 } = 0 . 3 7 5 = 3 7 . 5 \%$
$\frac{9}{12}=\frac{3}{4}=0.75=75 \%$
Cancel by 3

## 6/13 Fraction of quantity

- 4 means $\div 5 \times 4$

5
e.g. To find 4 of $£ 40$

5
$£ 40 \div 5 \times 4=£ 40$

## 6/13 Percentage of quantity

Use only

> - $50 \%-\frac{1}{2}$
> $-10 \%-\frac{1}{10}$
> $-1 \%-\frac{1}{100}$

Example: To find $35 \%$ of $£ 400$ $10 \%=£ 40$
$20 \%=£ 80$
$5 \%=£ 20$
$35 \%=£ 140$

## 6/14 Similar shapes

When a shape is enlarged by a scale factor the two shapes are called SIMILAR shapes


Scale factor $=6 \div 3=2$
Length $a=5 \times 2=10 \mathrm{~cm}$
Length $b=8 \div 2=4 \mathrm{~cm}$

## 6/14 Unequal sharing

Example- unequal sharing of sweets

A gets
3 shares
$\begin{aligned} & \Rightarrow 3 \text { sweets } \\ & \Rightarrow 12 \text { sweets }\end{aligned} \times 4$
$B$ gets
4 shares
4 sweets 16 sweets $p \times 4$

## 6/15 Express missing numbers algebraically

An unknown number is given a letter

## Examples

$2 a-4=8$

```
\(2 a=12\) so \(a=6\)
```



## 6/15 Use a word formula

Example: -Time to cook a turkey
Cook for 45 min per kg weight
Then a further 45 min
For a 6 kg turkey, follow the formula:
$45 \min \times 6+45$ min
$=270 \mathrm{~min}+45 \mathrm{~min}$
$=315 \mathrm{~min}$
$=5 \mathrm{~h} 15 \mathrm{~min}$

## 6/16 Number sequences

- Understand position and term

| Position | 1 | 2 | 3 | 4 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Term | 3 | 8 | 7 | 11 | 15 |

+4
Term to term rule $=+4$
Position to term rule is $\times 4-1$
(because position 1×4-1=3)
$n$th term $=n \times 4-1=4 n-1$

- Generate terms of a sequence

If the $n$th term is $5 n+1$
$1^{\text {st }}$ term $(n=1)=5 \times 1+1=6$
$2^{\text {nd }}$ term ( $n=2$ ) $=5 \times 2+1=11$
$3^{\text {rd }}$ term $(n=3)=5 \times 3+1=16$

## 6/17 Possible solutions of a number sentence

Example: $x$ and $y$ are numbers
Rule: $x+y=5$
Possible solutions: $x=0$ and $y=5$

$$
\begin{aligned}
& x=1 \text { and } y=4 \\
& x=2 \text { and } y=3 \\
& x=3 \text { and } y=2 \\
& x=4 \text { and } y=1 \\
& x=5 \text { and } y=0
\end{aligned}
$$

## 6/18 Convert units of measure METRIC

When converting measurements follow these rules:

- When converting from a larger unit to a smaller unit we multiply ( $x$ )
- When converting from a smaller unit to a larger unit we divide ( $\div$ )

| UNITS of LENGTH |
| :--- |
| $10 \mathrm{~mm}=1 \mathrm{~cm}$ |
| $100 \mathrm{~cm}=1 \mathrm{~m}$ |
| $1000 \mathrm{~m}=1 \mathrm{~km}$ |

> | UNITS of MASS |
| :--- |
| $1000 \mathrm{~g}=1 \mathrm{~kg}$ |
| $1000 \mathrm{~kg}=1$ tonne |

> | UNITS of TIME |
| :--- |
| $60 \mathrm{sec}=1 \mathrm{~min}$ |
| $60 \mathrm{~min}=1$ hour |
| $24 \mathrm{~h}=1$ day |
| 365 days $=1$ year |

| UNITS of VOLUME |
| :--- |
| $1000 \mathrm{ml}=1$ litre <br> $100 \mathrm{cl}=1$ litre |

## 6/19 Convert units of measure

 METRIC/IMPERIALLEARN: $\quad 5$ miles $=8 \mathrm{~km}$


## 6/20 Perimeter and area of shapes

Shapes can have the SAME area but different perimeters

The area of each shape is 9 squares

|  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  | $B$ |  |  |
|  |  | $A$ |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  | $C$ |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

Perimeter of each shape is different A-12; B-14; C-16

## 6/21 Area of parallelogram \& triangle

- Area of parallelogram Area of parallelogram $=b \times h$

$$
\begin{aligned}
& =8 \times 5 \\
& =40 \mathrm{~cm}^{2}
\end{aligned}
$$



- Area of triangle ( $\frac{1}{2}$ a parallelogram)

Area of triangle $=\frac{b \times h}{2}$

$$
\begin{aligned}
& =\frac{8 \times 5}{2} \\
& 20 \mathrm{~cm}^{2}
\end{aligned}
$$

## 6/22 Volume

- Volume of cuboid

Volume $=1 \times w \times h$

$$
\begin{aligned}
& =5 \times 3 \times 2 \\
& =30 \mathrm{~cm}^{3}
\end{aligned}
$$



- Volume of cube Volume $=1 \times w \times h$

$$
\begin{aligned}
& =3 \times 3 \times 3 \\
& =27 \mathrm{~m}^{3}
\end{aligned}
$$



## 6/23 Construct 2D shapes

Example: Triangle with side and angles given

- Draw line $A B=7 \mathrm{~cm}$
- Draw angle $34^{\circ}$ at point $A$ from line $A B$
- Draw angle $47^{\circ}$ at point $B$ from line $A B$
- Extend to intersect the lines at $C$


6/23 Construct 3D shapes
CUBE \& its net


CUBOID \& its net


TRIANGULAR PRISM \& its ne $\dagger$


## 6/24 Properties of shapes

TRIANGLES - sum of angles $=180^{\circ}$


ISOSCELES triangle
2 equal sides \& 2 equal angles


EQUILATERAL triangle 3 equal sides \& ALL angles $60^{\circ}$


## $\underline{\text { QUADRILATERALS - sum of angles }=360^{\circ}}$



REGULAR POLGONS - all sides the same

- Polygons have straight sides
- Polygons are named by the number sides 3 sides - triangle
4 sides - quadrilateral
5 sides - pentagon
6 sides - hexagon
7 sides - heptagon
8 sides - octagon
9 sides - nonagon
10 sides - decagon

Sum of exterior angles is always $360^{\circ}$


- interior \& exterior angle add up to $180^{\circ}$
- the interior angles add up to:

Triangle

$$
=1 \times 180^{\circ}=180^{\circ}
$$

Quadrilateral $=2 \times 180^{\circ}=360^{\circ}$
Pentagon $=3 \times 180^{\circ}=540^{\circ}$
Hexagon $=4 \times 180^{\circ}=720^{\circ}$ etc

## 6/25 Parts of a circle

- The circumference is the distance all the way around a circle.
- The diameter is the distance right across the middle of the circle, passing through the centre.
- The radius is the distance halfway across the circle.
- The radius is always half the length of the diameter. $(d=2 \times r)$ or $\left(r=\frac{1}{2} \times d\right)$



## 6/26 Angles and straight lines

- Angles on a straight line add up to $180^{\circ}$


$$
148^{\circ}+32^{\circ}=180^{\circ}
$$

- Angles about a point add up to $360^{\circ}$


$$
146^{\circ}+90^{\circ}+124^{\circ}=360^{\circ}
$$

- Vertically opposite angles are equal


6/27 Position on a co-ordinate grid


## 6/28 Transformations

- Translation -A shape moved along a line


Example - Move shape A 3 right \& 4 down
Can also be written as a vector $\binom{3}{-4} \begin{aligned} & \text { Right } \\ & \text { Down }\end{aligned}$


Notice:

- The new shape stays the same way up
- The new shape is the same size
- Reflect a shape in $x$-axis

- Reflect a shape in $y$-axis



## 6/29 Graphs

○

| Transport | Frequency | Angle |
| :--- | :---: | :---: |
| Car | 13 | $13 \times 9=117^{\circ}$ |
| Bus | 4 | $4 \times 9=36^{\circ}$ |
| Walk | 15 | $15 \times 9=135$ |
| Cycle | 8 | $8 \times 9=72$ |

Total frequency $=40$

$$
360^{\circ} \div 40=9^{\circ} \text { per person }
$$



## - Line graph

Line graphs show changes in a single variable - in this graph changes in temperature can be observed.


## 6/30 The mean

The mean is usually known as the average.
The mean is not a value from the original list.
It is a typical value of a set of data
Mean $=$ total of measures $\div$ no. of measures
e.g.- Find mean speed of 6 cars travelling on a road Car 1-66mph
Car 2 - 57 mph
Car 3-71mph
Car 4-54mph
Car 5-69mph
Car 6-58mph


Mean $=\frac{66+57+71+54+69+58}{6}$

$$
\begin{aligned}
& =\frac{375}{6} \\
& =62.5 \mathrm{mph}
\end{aligned}
$$

Mean average speed was 62.5 mph

