## Year 5 (2023-24)

## Carlisle \& Hampton Hill Federation

## Maths

 The Year Ahead...The following information booklet details the general plan for teaching and learning in the coming academic year at HHJS. We follow the White Rose Scheme of learning which is attached for your information. I have also included some extra resources you may find useful at home for pre-teaching or consolidation.

** These booklets are available on the website for all KS1 and 2 year groups across our federation.
For more information speak to Miss Duffy (year 4 @HHJS)

## Useful resources

White Rose's free workbooks align with the topics we will cover.

- Available for all topics across the year.
https://whiterosemaths.com/parent-resources


Free digital tools - these match the representations used in class and align with our mastery approach, by bringing the maths to life.
https://whiterosemaths.com/resources/digital-tools


## Stage 5

PROMPT sheet

5/1 Place value in numbers to 1 million
The position of the digit gives its size

|  |  |  | $\begin{aligned} & \text { n } \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & + \\ & \hline \end{aligned}$ |  | $\underset{ \pm}{n}$ | $\frac{n}{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |

## Example

The value of the digit ' 1 ' is 1000000
The value of the digit '2' is 200000
The value of the digit ' 3 ' is 30000
The value of the digit ' 4 ' is 4000

5/2 Round numbers to nearest 10,100, 1000, 10000, 100000
Example 1- Round 342679 to the nearest 10000

- Step 1 - Find the 'round-off digit' - 4
- Step 2-Look one digit to the right of 4-2

5 or more? NO - leave 'round off digit' unchanged

- Replace following digits with zeros

$$
\text { ANSWER - } 340000
$$

Example 2- Round 453679 to the nearest 100000

- Step 1 - Find the 'round-off digit' - 4
- Step 2 - Look one digit to the right - 5

5 or more? YES - add one to 'round off digit'

- Replace following digits with zeros

ANSWER - 500000

## 5/3 Negative numbers

A number line is very useful for negative numbers.

- The number line below shows:

$$
4-7=-3
$$



- The number line below shows:

$$
-2+6=4
$$



5/4 Roman Numerals
The seven main symbols
$I=1$

$V=5$
$X=10$
$L=50$
$C=100$
$D=500$
$M=1000$
Other useful ones include:
IV $=4$
IX $=9$
$X L=40$
$X C=90$

## 5/5 Written methods for addition

- Line up the digits in the correct columns
- Start from RIGHT to LEFT
e.g. $48+284+9$

H T U
48
284

| 129 |
| :--- |
| 341 |

5/5 Written methods for subtraction

- Line up the digits in the correct columns
- Start from RIGHT to LEFT
e.g. 645-427

$$
\begin{array}{rll}
H & T & U \\
6^{3} & 4 & 1 \\
4 & 2 & 7 \\
4 & 2 & 7 \\
\hline 2 & 1 & 8
\end{array}-
$$

## 5/6 Mental methods for addition

- Start from LEFT to RIGHT

Example 1 - think of:
$45+32$ as $45+30+2$

- But in your head say:
$45 \quad 75 \quad 77$

Example 2 - think of:
$1236+415$ as $1236+400+10+5$

- But in your head say:

1236163616461651

5/6 Mental methods for subtraction

Example 1 - think of:
56-32 as 56-30-2

- But in your head say:

562624

Example 2 - think of:
1236-415 as 1236-400-10-5

- But in your head say:
$\begin{array}{llll}1236 & 836 & 826 & 821\end{array}$


## 5/7 Multi-step problems

## Based upon 5/6.

Words associated with addition:


Words associated with subtraction:


## 5/8 Multiples \& factors

- FACTORS are what divides exactly into a number
e.g. Factors of 12 are:
Factors of 18 are:

| 1 | 18 |
| ---: | ---: |
| 2 | 9 |
| 3 | 6 |

The common factors of $12 \& 18$ are: $1,2,3,6$, The Highest Common Factor is: 6

- MULTIPLES are the times table answers e.g. Multiples of 5 are: $\quad$ Multiples of 4 are: | 5 | 10 | 15 | 20 | $25 \ldots .$. | 4 | 8 | 12 | 16 | 20 | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The Lowest Common Multiple of 5 and 4 is: 20

## 5/9 Prime numbers

Prime numbers have only TWO factors

The factors of 12 are:
1, 2, 3, 4, 6, 12


12 is NOT prime
It is composite

Factors of 7 are:
1, 7


7 IS prime

## Prime numbers to 20

| 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| 6 | 7 | 8 | 9 | 10 |
| 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 |

The number ' 1 ' is NOT prime


## 5/10 Multiplication using a formal method

- By a ONE-DIGIT number
e.g. $3561 \times 7$
$\frac{\text { COLUMN METHOD }}{3561}$
$\frac{7 x}{\frac{24927}{34}}$
e.g. $3561 \times 7$ GRID METHOD

|  | 3000 | 500 | 60 | 7 |
| :---: | :---: | :---: | :---: | :---: |
| 7 | 21000 | 3500 | 420 | 49 |

$21000+3500+420+49=24927$

- By a TWO-DIGIT number
e.g. $152 \times 34$

COLUMN METHOD 152
34x
$608(x 4)$
4560 ( $\times 30$ )
5168
e.g. $152 \times 34$ GRID METHOD

|  | 100 | 50 | 2 |
| :--- | :--- | :--- | :--- |
| 30 | 3000 | 1500 | 60 |
| 4 | 400 | 200 | 8 |

$152 \times 34=3400+1700+68=\underline{5168}$

5/10 Division using a formal method

- By a ONE-DIGIT number
e.g. $9138 \div 6$
$6 \longdiv { 1 5 2 6 }$
- By a TWO-DIGIT number
e.g. $4928 \div 32$

SAME METHOD
(Except write down some of your tables down first)
32
64
96
128
160

$$
\begin{array}{r}
0154 \\
3 2 \longdiv { 4 ^ { 4 } 9 ^ { 1 7 } 2 ^ { 1 2 } } 8
\end{array}
$$

$$
4928 \div 32=\underline{154}
$$

e.g. $4928 \div 32$ ALTERNATE METHOD

- Divide
- Multiply
- Subtract
- Bring down - Make a new number
- Divide ...

$$
\begin{array}{r}
\begin{array}{r}
0154 \\
32 \begin{array}{r}
4928 \\
-32 \downarrow \\
172 \\
-160 \\
128 \\
-128 \\
000
\end{array} \\
4928 \div 32=154
\end{array}
\end{array}
$$

## 5/11 Multiply \& divide by $10,100,1000$

- By moving the decimal point

To multiply by 10 move the dp ONE place RIGHT
e.g. $13^{\wedge} \times 10=130$

$$
\stackrel{\sim}{3.4 \times 10=34}
$$

To divide by 10 move the dp ONE place LEFT
e.g. $13 \div 10=1.3$

$$
3.4 \div 10=0.34
$$

- By moving the digits

To multiply by 10 move the digits ONE place LEFT
egg.


To multiply or divide by 100 move TWO places To multiply or divide by 1000 move THREE places

## 5/12 Square \& Cube numbers

Square numbers


Cube numbers


## 5/13 Fractions

- To compare fractions
- the denominators must be the same


$$
\text { so } \frac{5}{6} \text { is bigger than } \frac{2}{3}
$$

- To add and subtract fractions

When the denominators are the same $\frac{5}{8}+\frac{1}{8}=\frac{6}{8}$

$\frac{5}{8}-\frac{1}{8}=\frac{4}{8}$


## 5/13 To add subtract fractions (cont)

When the denominators are different


## 5/14 Equivalent fractions

These fractions are the same but can be drawn and written in different ways


$$
\begin{aligned}
& \frac{3}{4}=\frac{12}{16} \\
& \frac{3(x 4)}{4^{(x 4)}}=\frac{12}{16}
\end{aligned}
$$

Fractions can also be divided to make the fraction look simpler - this is called CANCELLING or LOWEST FORM

$$
\frac{12}{16}(\div 4)=\frac{3}{4}
$$

## 5/15 Mixed \& improper fractions

- An improper fraction is top heavy \& can be changed into a mixed number
$\frac{3}{2}$ can be shown in a diagram

- A mixed number can be changed back into an improper fraction

$$
\begin{aligned}
& 1 \frac{1}{x^{2}}=\frac{3}{2} \\
& 2_{x}^{+} \frac{3}{4}=\frac{11}{4}
\end{aligned}
$$

## 5/16 Multiply fractions

Multiply is the same as repeated addition

$\frac{3}{4}+\frac{3}{4}+\frac{3}{4}$
$y_{\frac{3}{4}}$

$$
\frac{3}{4} \times 3=\frac{3}{4}+\frac{3}{4}+\frac{3}{4}=\frac{9}{4}=2 \frac{1}{4}
$$

OR

$$
\frac{3}{4} \times \frac{3}{1}=\frac{9}{4}=2 \frac{1}{4}
$$

## 5/17 Round decimals

## Rules for rounding

1. Find the 'round off' digit
2. Move one digit to its right
3. Is this digit 5 or more Yes - add one to the round off digit No - don't change the round off digit

- To the nearest whole number
e.g. 1 - To round 5.62 to the nearest whole
'round off' digit
this digit is 5 or more
5.62 rounded to nearest whole $=6$
e.g. 2 - To round 5.32 to the nearest whole
'round off' digit

5.32 rounded to nearest whole $=5$
- To one decimal place
e.g. 1 - To round 12.37 to 1 decimal place
'round off' digit
this digit is 5 or more
12.37 rounded to $1 \mathrm{dp}=12.4$
e.g. 2 - To round 12.32 to the nearest whole


[^0]
## 5/18 Read \& write decimals

The value of each digit is shown in the table

| $\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & E \\ & E \end{aligned}$ | $\underset{ \pm}{ }$ | $\stackrel{n}{5}$ | - | $\xrightarrow{\substack{n \\ \underset{\sim}{2} \\+\\ \hline}}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 5 | 2 | - | 6 | 1 | 7 |
| 300 | 50 | 2 |  | $\frac{6}{10}$ | $\frac{1}{100}$ | $\frac{7}{1000}$ |
| 352 |  |  |  | $\frac{61}{100}$ |  | $\frac{7}{1000}$ |
| 352 |  |  |  | $\frac{617}{1000}$ |  |  |

## 5/18 Order decimals

Example - To order $0.28,0.3,0.216$

- Write them under each other
- Fill gaps with zeros
- Then order them
- 

$0.28 \longrightarrow 0.280$
$0.3 \longrightarrow 0.300$
$0.216 \longrightarrow 0.216$
smalles $\dagger$
largest
Order:
0.216
0.28
0.3

## 5/19 Decimal \& Percentage equivalents

Learn

| Fraction | Decimal | Percentage |
| :---: | :---: | :---: |
| $\frac{1}{2}$ | 0.5 | $50 \%$ |
| $\frac{1}{4}$ | 0.25 | $25 \%$ |
| $\frac{1}{5}$ | 0.2 | $20 \%$ |
| $\frac{1}{10}$ | 0.1 | $10 \%$ |
| $\frac{1}{100}$ | 0.01 | $1 \%$ |

Some fractions have to be changed to be 'out of 100 '

$$
\frac{11(\times 4)}{25}(\times 4)=\frac{44}{100}=0.44=44 \%
$$

## 5/20 Convert metric measure

- Length

- Mass or weight

- Capacity or volume



## 5/20 Imperial measure

- 1 inch is about 2.5 cm

$$
4
$$

- $1 \mathrm{~km}=1.6$ miles or 5 miles $=8 \mathrm{~km}$
- 1 kg is about 2.2pounds

- A litres of water's a pint and three quarters
- A gallon is about 4.5 litres


## 5/21 Area \& Perimeter

- Estimate area


Number of whole squares $(\mathrm{O})=16$
Number of $\frac{1}{2}$ or more $(x)=5$
Estimated area $=21$ squares

- Shapes composed of rectangles

Put on all missing lengths first
For perimeter - ADD all lengths round outside For area - split into rectangles \& add them together


Perimeter $=12+6+4+2+8+4=36 \mathrm{~cm}$


$$
\begin{aligned}
\text { Area of shape } & =\text { Area of } A+B \\
& =(8 \times 4)+(6 \times 4) \\
& =32+24 \\
& =56 \mathrm{~cm}^{2}
\end{aligned}
$$

## 5/22 Volume

Volume is measured in cubes

## The 1 cm cube



5/23 Units of time

- Time conversion

- Time intervals

Always go to the next whole hour first
Example: 0830 to 1125


## 5/24 2D representations of 3D shapes

- There are 3 views:



## 5/25 Angles

- Types of angles


## Acute

(less than $90^{\circ}$ )


Obtuse
(Between $90^{\circ}$ \& $180^{\circ}$ )

Reflex
(Between $180^{\circ}$ \& $360^{\circ}$ )


- Measure and draw angles


To be sure, count the number of degrees between the two arms of the angle

## 5/26 Angles



Angles on a straight line add up to $180^{\circ}$ or 2 right angles $\left(2 \times 90^{\circ}\right)$


Angles about a point add up to $360^{\circ}$ or 4 right angles $\left(4 \times 90^{\circ}\right)$

## 5/27 Properties of the rectangle

- A rectangle is a quadrilateral (4 sided shape)
- All angles are $90^{\circ}$

- Opposite sides are equal

- Opposite sides are parallel

- Diagonals are equal

- Diagonals bisect each other (cut in half)

- A square is a special rectangle


## 5/28 Reflection

- Reflection in a vertical line

- Reflection in a horizontal line



## 5/28 Translation - 4 right \& 1 down



- In reflection and translation the shapes remain the same size and shape CONGRUENT
- In reflection the shape is flipped over
- In translation the shape stays the same way up


## 5/29 Line graphs

- Find the difference

Example 1: What was the difference in temperature between 1030 and 1130 ?
Answer: $11.5^{\circ} \mathrm{C}-10^{\circ} \mathrm{C}=1.5^{\circ} \mathrm{C}$


- Find the sum of the data

Example: What was the total number of days absent over the 6 years?
Answer: $3+4+7+7+9+2=32$ days


## 5/30 Interpret information in tables

- Distance table

Example: Find the distance between Leeds and York
Answer: 40miles

| Hull |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 100 | Leeds |  |  |  |
| 162 | 73 | Manchester |  |  |
| 110 | 60 | 65 | Sheffield |  |

- Timetable

Example: How long is the film?
Answer: $1.10-2.35=1 \mathrm{~h} 25 \mathrm{~min}=85 \mathrm{~min}$

| 6.30 am | Educational programme |
| :--- | :--- |
| 7.00 | Cartoons |
| 7.25 | News and weather |
| 8.00 | Wildlife programme |
| 9.00 | Children's programme |
| 11.30 | Music programme |
| 12.30 pm | Sports programme |
| 1.00 | News and weather |
| $1.10-2.35 \mathrm{pm}$ | Film |

- Table of results of goals scored

Example: Did boys or girls score the most goals?
Answer: Boys: $6+3+3+6=18$
Girls: 7+5=12
Boys scored the most goals

|  | Game 1 | Game 2 | Game 3 | Game 4 | Game 5 | Frequency |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peter | 1 | 0 | 0 | 2 | 3 | 6 |
| John | 0 | 2 | 1 | 0 | 0 | 3 |
| Ryan | 1 | 0 | 1 | 1 | 0 | 3 |
| Claire | 2 | 0 | 2 | 1 | 2 | 7 |
| Bill | 3 | 1 | 1 | 0 | 1 | 6 |
| Susan | 0 | 1 | 3 | 1 | 0 | 5 |


[^0]:    12.37 rounded to $1 \mathrm{dp}=12.3$

